and(or) α -chloroketones (3)¹ (Scheme 1).

MeONa powder (0.1 mol) was added at $-15 \div -10$ °C to a solution of 3,3-dichloropentanedione (0.1 mol) and benzaldehyde (0.1 mol) in absolute ether

(100 mL) with stirring in an argon atmosphere. The temperature of the reaction mixture was increased to 20 °C and then the mixture was refluxed for 1 h. 4-Acetoxy-3,3-dichloro-4-phenyl-2-butanone (1a) was isolated. Yield 33 %, b.p. 122-130 °C (0.06 Torr), m.p. 38-40 °C. Found (%): C, 52.79; H, 4.44; C, 25.85. $C_{12}H_{12}Cl_2O_3$. Calculated (%): C, 52.39; H, 4.40; Cl, 25.77; IR (vaseline oil), v/cm^{-1} : 800, 945, 1030, 1050, 1230, 1370, 1460, 1500, 1730, 1760, 3045, 3065. ¹H NMR (CCl₄), δ : 7.60–7.00 (m, 5 H, C₆H₆); 6.25 (s, 1 H, CH); 2.40 (s, 3 H, CH₃CO); 1.96 (s, 3 H, CH₃COO). 13 C NMR (CCl₄, external standard C₆D₆ + HMDS), δ: 194.7 (CO); 168.3 (COO); 134.9 (C_i); 130.3 (C_o) ; 128.7 (C_m) ; 130.0 (C_p) ; 89.3(CCl₂); 77.34 (CH); 25.2 (CH₃COO); 21.3 (CH₃CO); by similar procedure from p-MeO-C₆H₄CHO and p-O₂N-C₆H₄-CHO 1b (53 %) and 1c (11 %) were obtained.

References

1. S. K. Gupta, J. Org. Chem., 1973, 38, 4081.

Received October 29, 1993

Formation of a complex with the anionic quinoid structure in the interaction of 3-(3',5'-di-*tert*-butyl-4'-hydroxybenzylidene)-pentanedione-2,4 with copper(II) acetate

I. A. Zav'yalov, E. R. Milaeva,* and A. I. Prokof'ev

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085

It is known that β-diketones in the non-enolized form are capable of forming complexes with various metal ions. Cu, Co, and Zn complexes of 3-(benzy-lidene)acetylacetone described recently are stable due to the presence of a developed conjugation chain in their molecules. We have studied the interaction of Cu(OAc)₂ in EtOH with 3-(3',5'-di-tert-butyl-4'-hydroxybenzylidene)pentanedione-2,4 (1), which exists as two tautomeric forms in solution (Scheme 1).

It might be thought that the reaction would go in two main directions to yield compounds 2 and 2a, but the only product was 3-(3',5'-di-tert-butylmethylene-quinonyl-4') copper acetylacetonate 2a.

In the IR spectrum of compound 2a there are absorption bands corresponding to valent vibrations of the C=O bond of the quinoid group and of the enolized form of β -diketone.

The parameters of the anisotropic ESR spectrum of compound 2a are also in good agreement with the literature data⁴ for copper(II) acetylacetonate. The correlation of the g-factors observed for compound 2a points to tetragonal or distorted tetrahedral geometry. The increased g_{\parallel} and degreased a_{\parallel} relative to copper acetylacetonate indicate pseudo-tetrahedral distortions in the structure of complex 2a (Table 1).

Thus, of the two possible routes of the complexation

reaction, the formation of the anionic acetylacetonate structure proved to be preferable than coordination of the metal atom with β -diketone by a neutral type.

It is important to point out that the application of the ESR method ascertained the absence of any interactions between the free radicals generated by singleelectron oxidation of the phenol fragment of ligand 1,

Table 1. Parameters of anisotropic EPR spectra of compound **2a** and copper acetylacetonate (EtOH, 77 K)

Compound	$g_{ }$	g_{\perp}	a _{ll} /G	a_{\perp}/G
Complex 2a	2.281	2.063	167	22
Copper acetylacetonate	2.253	2.057	183	23

and the copper(II) ions (both independent paramagnetic species can be registered by ESR spectra). This indicates that the formation of the enolized form of β -diketone 1a does not include oxidation and complex 2a does arise from the tautomeric conversion of the ligand.

UV spectrum of compound **2a** (DMFA), λ_{max}/nm : 259.6; 331.8; 640. IR spectrum of compound **2a** (suspension in vaselin): multiplet, v 1590—1640 cm⁻¹.

The characteristics of compound **2a**: b.p. 128-129 °C. Found (%): C, 69.41; H, 8.03; Cu, 9.08. $C_{40}H_{54}O_6Cu$. Calculated (%): C, 69.21; H, 7.79; Cu, 9.16

References

- Comprehensive Coordination Chemistry, Ed. G. Wilkinson, Pergamon Press, Oxford, New York, 1987, 2, 1179.
- S. A. Samath, M. Raman, N. Raman, K. T. Jeyasubramanian, and S. K. Ramalingam, *Trans. Met. Chem.*, 1992, 17, 13.
- Ya. M. Paushkin and D. V. Glushkova, Vesti AN BSSR. Ser. Khim. Nauk [Bull. Acad. Sci. Belorussian SSR. Div. Chem. Sci.], 1975, 1, 58 (in Russian).
- V. V. Saraev and F. K. Shmidt, Elektronnyi magnitnyi rezonans metallokompleksnykh katalizatorov [Electronic Paramagnetic resonance of metallocomplex catalysts], Irkutsk University, Irkutsk, 1985, 152 (in Russian).

Received December 2, 1993